# organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Zhi-Qiang Huang, Zhi-Qiang Du,\* Guan-Sheng Du and Jun Yan

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: duzq@zju.edu.cn

#### **Key indicators**

Single-crystal X-ray study T = 295 KMean  $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$  R factor = 0.043 wR factor = 0.112 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# 3-(1,3-Benzothiazol-2-yl)-2-naphthol

The molecule of the title compound,  $C_{17}H_{11}NOS$ , is planar, the dihedral angle between the benzothiazole and 2-naphthol systems being 3.44 (6)°. The face-to-face separation of 3.48 (2) Å indicates  $\pi$ - $\pi$  stacking between parallel benzothiazole systems.

### Comment

The title compound, (I), is an intermediate of photochromic compounds (Deligeorgiev *et al.*, 2002). We report here the molecular structure of (I).



The molecular structure of (I) is shown in Fig. 1. The molecule is planar, the dihedral angle between the benzothiazole and 2-naphthol mean planes being  $3.44 (6)^{\circ}$ . Intramolecular hydrogen bonding occurs between the benzothiazole and naphthol ring systems (Table 1).

The parallel benzothiazole systems partially overlap each other (Fig. 2). The face-to-face separation of 3.48 (2) Å indicates the existence of  $\pi$ - $\pi$  stacking.

## Experimental

The title compound was prepared according to the procedure described by Deligeorgiev *et al.* (2002). It was synthesized by reaction of 2-hydroxy-3-naphthalenecarboxylic acid and 2-aminothiophenol in boiling toluene. Single crystals of (I) were obtained by recrystallization from toluene solution.



#### Figure 1

The molecular structure of (I), with 40% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding.

Received 4 April 2006 Accepted 16 April 2006

© 2006 International Union of Crystallography

All rights reserved



**Figure 2** The  $\pi$ - $\pi$  stacking in (I) [symmetry code: (i) 1 - x, -y, 2 - z].

#### Crystal data

 $C_{17}H_{11}NOS$   $M_r = 277.33$ Monoclinic,  $P2_1/n$  a = 6.3634 (9) Å b = 8.5293 (12) Å c = 23.588 (3) Å  $\beta = 95.120 (3)^{\circ}$   $V = 1275.1 (3) Å^{3}$ 

#### Data collection

Bruker SMART CCD area-detector diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002)  $T_{\min} = 0.931, T_{\max} = 0.945$ 

### Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.043$   $wR(F^2) = 0.112$  S = 0.862497 reflections 181 parameters Z = 4  $D_x$  = 1.445 Mg m<sup>-3</sup> Mo K $\alpha$  radiation  $\mu$  = 0.25 mm<sup>-1</sup> T = 295 (2) K Prism, pale yellow 0.34 × 0.27 × 0.22 mm

6746 measured reflections 2497 independent reflections 1755 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.051$  $\theta_{\text{max}} = 26.0^{\circ}$ 

H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0699P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{max} = 0.002$   $\Delta\rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$  $\Delta\rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$ 

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|------------------|------|-------------------------|--------------|------------------|
| $O1-H1\cdots N1$ | 0.82 | 1.88                    | 2.612 (2)    | 149              |

H atoms bonded to C atoms were positioned geometrically and treated as riding, with C–H = 0.93 Å and  $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ . The hydroxy H atom was located in a difference Fourier map and refined as riding in its as-found relative position (O–H = 0.82 Å), with  $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm O})$ .

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The work was supported by the National Natural Science Foundation of China (grant No. 20376071). The authors thank Professor Long-Guan Zhu for his kind assistance in preparing the CIF.

## References

- Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02a) and SMART
- (Version 5.618). Bruker AXS Inc., Madison, Wisconsin, USA.
- Deligeorgiev, T., Minkovska, S., Jejiazkova, B. & Rakovsky, S. (2002). *Dyes Pigments*, **53**, 101–108.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.